CORTICAL INHIBITORY NEURONS EXHIBIT CELL-TYPE
SPECIFIC MATURATION PROGRAMME
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Using correlation networks, we generate an AUROC
measure for each cluster pair between our data and the
reference. This works as a similarity metric, and we find
our clusters align to MET-types with the expected
projections and properties. This alignment allows us to
estimate expected soma depth for each cluster

The full diversity of somatostatin-expressing interneurons is not well understood,
particularly timings of differentiation and laminar allocation. To illuminate upon these
points, we take a combined approach to characterise the range of neuronal cell
identities across embryonic timepoints in the mouse cortex, both by their transcriptomic
profile and by spatial position.
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detectable early in development alongside shared maturation modules.
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SINGLE CELL RNA SEQUENCING LAMINAR DISTRIBUTION
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By application of an iterative clustering algorithm to LRP_4

scRNA-seq data we identify four LRP subtypes, three MC
subtypes and five NMC subtypes annotated by differentially

expressed markers. We find several LRP subtypes, suggesting ! A B SRR 3 REFERENCES
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